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Abstract: We present the design of a five-cavity, approximately 18 cm downstream from the center of the
broadband, high-power multiple-beam klystron (MBK) first gap - the logical position to place the output cavity. In
operating in S-band The MBK uses a 32 A, 45 kV eight- Fig. 2, the bunching current at this axial location is plotted
beam electron gun [1] whose design has been successfully as a function of frequency for different input drive power
tested in a previous narrowband MBK circuit [2, 3]. The levels. Note that the beam modulation is relatively flat with
circuit was optimized using the 3D particle-in-cell code frequency and linear with input power.
MAGIC; the predicted performance includes a 3-dB
bandwidth of 6.7%, peak power of -600 kW and a gain of The predicted MBK output power as a function of
33 dB. This circuit performance represents a three-fold frequency is shown in Fig. 3 (using a broadband, two-gap
increase in the bandwidth-power product relative to our output cavity and a constant 300 W RF input drive). As
previous circuit, seen in the figure, the circuit generates >550 kW across the

band with a peak power of more than 600 kW at -3.27
Keywords: Multiple-beam klystron; MBK; bandwidth GHz. The 1-dB bandwidth is 5.2% (3-dB bandwidth of
extension; broadband cavity. 6.7%) with a maximum gain of 33 dB and corresponding

efficiency of 42%. This performance has been achieved
Design of a Broadband Multiple-Beam Circuit with an overall circuit length of -22 cm. Table I
To achieve broad bandwidth operation, the circuit employs summarizes the operating characteristics of the five
three two-gap cavities (the input cavity, second cavity, and individual cavities (the 2n-mode frequencies of the three
output cavity) and two single-gap cavities (third cavity and two-gap cavities have been tuned well outside the operating
pen-ultimate cavity). The purpose of the two-gap cavities is band).
to increase the R/Q to enable broader bandwidth operation
while maintaining the desired saturated power and gain Acknowledgement
within the constraints of a short overall interaction length. This work was supported by the Office of Naval Research.
In the two-gap cavities, four rectangular slots couple two
separate but dimensionally-identical cavities via their
common endwalls. As expected for a system of two References
coupled individual cavities, there are two eigenmodes with 1. K. T. Nguyen, et al., IEEE Trans. Plasma Sci., 32(3),
distinct frequencies: the m = 0 (27r-mode) and the m = 1 (7c- pp. 1212-1222, June 2004.
mode). The coupling slot dimensions control the mode 2. K. T. Nguyen, et al., IEEE Trans. Plasma Sci., 32(3),
frequency separation and also the coupling strength pp. 1119-1135, June2004.
between the two gaps. For stability reasons and because of ppK.19-1, e 2004.
geometric constraints, the it-mode was selected as the 3. D.5K. Abe, et al., IEEE Electron Dev. Lett., 26(8), pp.
operating mode for all of the two-gap cavities. 590-592, Aug. 2005.

4. K. T. Nguyen, et al. IEEE Trans. Plasma Sci., 33(2),

The first four cavities comprise the bunching circuit (Fig. pp. 685-695, Apr. 2005.

la) which produces a highly bunched beam over the
frequency band of interest at the axial location of the output
cavity with reasonable gain. The evolution of the bunching
currents for several frequencies as a function of axial
position at 300 W of input power is shown in Fig. lb. The
magnitudes of these currents peak at an axial location
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76. FIGURE 2. Computed (MAGIC-3D) fundamental
bunching current as function of frequency at an

CU axial location of -18 cm downstream from the
-,1., / center of the first gap for a variety of input drive

" .," /power levels.
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Figure 1. (a) MAGIC-3D solid model of the

bunching circuit; (b) the computed fundamental
bunching current as a function of axial position for 5,

a variety of driving frequencies (constant 300 W .-dB bandwidth (5.20)
RF input drive). 400

b-

Table 1: Individual characteristics of the five 0
cavities comprising the broadband MBK circuit. O 30

3-Bbnwih (S.70 a

Cavity # of Gaps fo (GHz) Q 200

Input 2 (7r-mode) 3.160 54 100
3.1 3.15 3.2 3.25 3.3 3.35 3.4

Idler 1 2 (n-mode) 3.328 65 Frequency (GHz)

Idler 2 1 3.384 63

Idler 3 1 3.456 -- FIGURE 3. Computed (MAGIC-3D) frequency
response of the eight-beam, five-cavity MBK circuit

Output 2 (n-mode) 3.213 19 for a constant drive power of 300 W.
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